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Critical Frequencies in Scattering from Submerged Elastic Shells

Michael F. Werby, Hassan B. Ali, and Michael K. Broadhead
Naval Research Laboratory, Stennis Space Center, MS 39529-5004

Abstract ~ In the process of scattering from submerged
elastic shells, it is possible to excite many types of
resonances. Among these are the lowest order symmetric
and antisymmetric Lamb modes, and the waterborne waves,
such as the pseudo-Stoneley resonances and the higher
order symmetric and antisymmetric Lamb modes Si and
Ai(i1=1,2,3,..). The frequency at which these originate
are referred to as critical frequencies. We establish simple
rules to determine the frequencies at which the resonances
originate as a function of shell thickness and material
properties.

1. INTRODUCTION

The presence of resonances generated from acoustical
signals impinging on submerged evacuated clastic shells
has been known for some time. In particular, the presence
of the symmetric or dilatational Lamb mode S, as well
as the lowest order antisymmetric Lamb or Flexural mode
A, are well know and frequently studied. Morcover, the
existence of higher order symmetric S, and antisymmetric
A, Lamb modes (i>0) manifest themselves with increasing
frequency [1). In addition, newly studied phenomena such
as pseudo-Stoneley resonances [2-4] and pure waterborne
waves [5] have received attention recently. All but the
last phenomena have analogues for the infinite flat plate
case which is fluid loaded on one side and evacuated on
the other.

It is usual to associate resonances with vibrations, and
the presence of the Lamb rcsonances on spherical shells
can be associated with symmectric or antisymmectric
vibrations that at discrete frequencies form standing waves
on the object surface. These standing waves radiate into
the fluid and add coherently with the specularly scattered
signal producing a characteristic signaturc. The nature
and appearance of the resonances just described are a
function of material characteristics and shell thickness
in addition to frequency. For very thin shclls the lowest
order resonance has a large amplitude and is in a region
where there is a large recoil effect leading to both a
large monopole term as well as the dipole term associated
with the recoil effect. The subsequent symmetric Lamb
modes are characterized by a sharp minimum followed
by a sharp rise and then a return to a normal slowly
varying back scattered return signal (form function).
Flexural or antisymmetric resonances do not arisc until
the flexural phase velocity cquals the speed of sovid in

the fluid {4, 6] (subsonic material waves are too heavily
dampened to be observed); this value of frequency is
referred to as coincidence frequency. At and a little below
coincidence frequency another phenomenon enters the pic-
ture, namely sharply defined waterborne waves which have
their analogue in flat plates, namely Stoneley waves. Thus,
the resonances that arise from these waterborne waves
are labeled pseudo-Stoneley resonances. They occur only
in the frequency region about coincidence frequency and
give rise to very sharp spikes superimposed on broadly
overlapping flexural resonances. This effect can be very
dramatic. Another dramatic effect arises from the S,
symmetric resonance which is a separate topic presented
by Werby and Gaunaurd [7, 8]. Interestingly the onset of
all of the higher order Lamb resonances can be obtained
from the simple expressions used to predict the critical
frequencies for the fiat plate case. We will demonstrate this
effect by employing the residual partial wave analysis
(the partial wave component minus the exact acoustical
background for a shell). It is only possible to perform
the correct partial wave analysis if one has the correct
background for the elastic shell (9, 10].

2. ACOUSTIC SCATTERING FROM
SUBMERGED ELASTIC SHELLS

2.1 The Form Functions for Aluminum and Steel for
ka from 0 to 500

We illustrate in this section the form function for 5%
thick Aluminum and Steel shells. Figure 1a-d represent
backscatter from aluminum 1{a) from ka = 0 to 250, 1(b)
the residual results (with background subtracted) from
0o 250, 1{c) for aluminum from 250 to 500, and
1(d) the residual for aluminum from 250 to 500. Figure
2a-d represent backscatter from steel 2(a) from ka =010
250, 2(b) the residual results from 0 to 250, 2(c) for steel
from 250 to 500, and 2(d) the residual for steel from 250
to 500. It is clear that a great deal of detail is present in
cach of the plots. The low frequency large returns with the
sharp spikes for both materials are due to a superposition
of the pscudo-Stoneley resonances with the weaker broadly
overlapping flexural resonances. The higher frequency
resonances (about ka = 250 in both cases) are due to the
onset of the S, Lamb mode. We have indicated in the
plots the onsct of each of the modes.
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Figure 1. (a) Backscatter from 5% aluminum shell from ka = 0 to 250; (b) residual backscatier for case la; (c) backscatier from 5% aluminum shell from
ka = 250 10 500; and (d) residual backscatter for case lc.

2.2 Discussion of Pure Waterborne Waves

We have earlier discussed pseudo-Stoneley waves [3, 4].
There is another phenomenon that corresponds to waves
that have a phase velocity that is about the speed of
sound in water. They are not, however, sharply defined in
partial wave space, nor are they associated with the flexural
wave or coincidence frequency. They are associated with
the density of the material, and the thickness (really just
the mass of the target) and the frequency. Their importance
increases with frequency and they do no: manifest
themselves as sharp resonances in the form function but
rather wash out other resonances such as S, and A, reso-
nances. Thus for light material and thin shells such as
aluminum and at high frequency one does not observe
sharp resonances due to this wash out effect. We will
not discuss this effect here.

2.3 A Partial Wave Analysis

If one subtracts the correct background [9, 10} from
the elastic response then by definition one is left with

the “pure” resonance responsc. Resonances excited on
bodies of canonical shape usually correspond to circum-
ferentially excited waves which for spheres have a unique
wave number. To be sure, this fact can be obscured by,
for example, broadly overlapping partial waves; but none
the less plotting the residual partial wave components—
which is here referred to as a partial wave analysis-can
be very revealing. There are two ways to perform a partial
wave analysis: one can fix the mode number N and plot
the residual response with respect to ka. On the other
hand one can fix ka and plot the partial wave function
with respect to mode number N. The first of these
approaches is the most commonly used.

Figure 3a—c illustrates the PWA for 5% thick aluminum
shells out to a ka of 500 for modes 1, 2, and 10. We
have listed the onset of the different Lamb modes in
Table 1 and indicated with arrows in the plots here the
critical frequencies for each case. The same has been
done for steel in Figure 4a—c. It is clear that the simple
expressions listed in Table 1 and the computed values
agree with the onset of the higher order Lamb modes.
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Figure 2. (a) Backscatter from 5% steel shell from ka = 0 to 250; (b) residual backscatter for case 1a; (c) backscatter from 5% sieel shell from ka = 250
10 500; and (d) residual backscatier for case lc.

TABLE 1
CRITICAL FREQUENCIES FOR THE HIGHER ORDER LAMB
MODES ka = n(v, /v, Jwh A WHEN » ODD S WHEN » EVEN,
ka = n(v, /v, )Jn/h S WHEN n ODD A WHEN n EVEN A
IS % THICKNESS OF SHELL.

ALUMINUM STEEL

A, 1203 Ay 1402
S, 2585 S, 2439

S, 2691
A, 3878
Ay 4037
Sy 5171
S, 5382

S,
Az
Ay
S,
Sq

280.3
420.5
4879
560.6
7319

2.4 Phase Velocity Plots

We have included in this work the phase velocities
for the steel shell illustrated in Figure 5. Here we include
the pseudo-Stoneley resonance (Fig. 5a), the pure water-
borne wave (Fig. 5b), the A, resonance (Fig. 5c), the
S,resonance (Fig. 5d), the A, resonance (Fig. 5e),
the S, resonance (Fig. 5f), the S, resonance (Fig. 5g), the
A, resonance (Fig. 5h), and the A, resonance (Fig. 5i).
Note that the onset of each of the higher order Lamb
resonances conforms to the values listed in Table 1. Further
note that the S, resonance has a phase velocity that in
effect decreases at some point (early on) then increases
and then decreases again.

3. CONCLUSION

This is only a preliminary study of a large ongoing
study of Lamb resonances. It is encouraging that most
effects are easily understood in terms of flat plate theory
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Figure 4. Partial wave for steel: (2) mode 1, (b) mode 2, and
(c) mode 10.
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Figure 5. Phase velocity for steel: (a) pseudo-Stoneley resonance, 5% steel; (b) waterbome wave; (c) A, resonance; (d) S, resonance; (¢) A, resonance.

and that the critical frequencies can be predicted by such
simple expressions. Further some of the more dramatic
effects such as the pseudo-Stoneley resonances and those
due to the S, resonance can be interpreted.
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